Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.169
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
Photodermatol Photoimmunol Photomed ; 40(2): e12959, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38528712

RESUMEN

BACKGROUND: The increasing abundance of drug-resistant bacteria is a global threat. Photodynamic therapy is an entirely new, non-invasive method for treating infections caused by antibiotic-resistant strains. We previously described the bactericidal effect of photodynamic therapy on infections caused by a single type of bacterium. We showed that gram-positive and gram-negative bacteria could be killed with 5-aminolevulic acid and 410 nm light, respectively. However, clinically, mixed infections are common and difficult to treat. OBJECTIVE: We investigated the bactericidal effects of photodynamic therapy on mixed infections of methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa. METHODS: We compared bacterial growth with and without photodynamic therapy in vitro. Then, in vivo, we studied mixed infections in a mouse skin ulcer model. We evaluated the rates of ulcer area reduction and transitions to healing in treated and untreated mice. In addition, a comparison was made between PDT and existing topical drugs. RESULTS: We found that photodynamic therapy markedly reduced the growth of both methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa, in culture, and it reduced the skin ulcer areas in mice. PDT was also more effective than existing topical medicines. CONCLUSION: This study showed that photodynamic therapy had antibacterial effects against a mixed infection of gram-positive and gram-negative bacteria, and it promoted skin ulcer healing. These results suggested that photodynamic therapy could be effective in both single- and mixed-bacterial infections.


Asunto(s)
Coinfección , Staphylococcus aureus Resistente a Meticilina , Fotoquimioterapia , Úlcera Cutánea , Animales , Ratones , Ácido Aminolevulínico/farmacología , Ácido Aminolevulínico/uso terapéutico , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Pseudomonas aeruginosa , Ácido Edético/farmacología , Fotoquimioterapia/métodos , Bacterias Gramnegativas , Bacterias Grampositivas , Úlcera Cutánea/tratamiento farmacológico
2.
J Ethnopharmacol ; 328: 117957, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38493904

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: As reported in the Ancient Chinese Medicinal Books, Ginkgo biloba L. fruit has been used as a traditional Chinese medicine for the treatment asthma and cough or as a disinfectant. Our previous study demonstrated that G. biloba exocarp extract (GBEE), an extract of a traditional Chinese herb, inhibits the formation of methicillin-resistant Staphylococcus aureus (MRSA) biofilms. However, GBEE is a crude extract that contains many components, and the underlying mechanisms of purified GBEE fractions extracted with solvents of different polarities are unknown. AIM OF THE STUDY: This study aimed to investigate the different components in GBEE fractions extracted with solvents of different polarities and their antibacterial effects and mechanisms against MRSA and Staphylococcus haemolyticus biofilms both in vitro and in vivo. METHODS: The components in different fractions were detected by high-performance liquid chromatography-high resolution mass spectrometry (HPLC-HRMS). Microbroth dilution assays and time growth curves were used to determine the antibacterial effects of the fractions on 15 clinical bacterial isolates. Crystal violet staining, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were utilized to identify the fractions that affected bacterial biofilm formation. The potential MRSA targets of the GBEE fraction obtained with petroleum ether (PE), denoted GBEE-PE, were screened by transcriptome sequencing, and the gene expression profile was verified by quantitative polymerase chain reaction (qPCR). RESULTS: HPLC-HRMS analysis revealed that the four GBEE fractions (extracted with petroleum ether, ethyl acetate, n-butanol, and water) contained different ginkgo components, and the antibacterial effects decreased as the polarity of the extraction solvent increased. The antibacterial activity of GBEE-PE was greater than that of the GBEE fraction extracted with ethyl acetate (EA). GBEE-PE improved H. illucens survival and reduced MRSA colonization in model mouse organs. Crystal violet staining and SEM and TEM analyses revealed that GBEE-PE inhibited MRSA and S. haemolyticus biofilm formation. Transcriptional analysis revealed that GBEE-PE inhibits MRSA biofilms by altering ion transport, cell wall metabolism and virulence-related gene expression. In addition, the LO2 cell viability and H. illucens toxicity assay data showed that GBEE-PE at 20 mg/kg was nontoxic. CONCLUSION: The GBEE fractions contained different components, and their antibacterial effects decreased with increases in the polarity of the extraction solvent. GBEE-PE limited MRSA growth and biofilm formation by affecting ion transport, cell wall synthesis, and virulence-related pathways. This research provides a more detailed overview of the mechanism by which GBEE-PE inhibits MRSA both in vitro and in vivo and suggests that GBEE-PE is a new prospective antimicrobial with the potential to be used in MRSA therapeutics in the future.


Asunto(s)
Acetatos , Alcanos , Staphylococcus aureus Resistente a Meticilina , Animales , Ratones , Ginkgo biloba/química , Virulencia , Violeta de Genciana/farmacología , Estudios Prospectivos , Extractos Vegetales/farmacología , Solventes/química , Antibacterianos/farmacología , Biopelículas , Pruebas de Sensibilidad Microbiana
3.
Photochem Photobiol Sci ; 23(3): 561-573, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38372844

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) is one of the leading causes of skin and soft tissue infections worldwide. This microorganism has a wide range of antibiotics resistance, a fact that has made the treatment of infections caused by MRSA difficult. In this sense, antimicrobial photodynamic therapy (aPDT) with natural products has emerged as a good alternative in combating infections caused by antibiotic-resistant microorganisms. The objective of the present study was to evaluate the effects of aPDT with Brazilian green propolis against intradermal MRSA infection in a murine model. Initially, 24 Balb/c mice were infected intradermally in the ears with 1.5 × 108 colony-forming units of MRSA 43300. After infection, they were separated into 4 groups (6 animals per group) and treated with the vehicle, only Brazilian green propolis, only blue LED light or with the aPDT protocol (Brazilian green propolis + blue LED light). It was observed in this study that aPDT with Brazilian green propolis reduced the bacterial load at the site of infection. Furthermore, it was able to inhibit weight loss resulting from the infection, as well as modulate the inflammatory response through greater recruitment of polymorphonuclear cells/neutrophils to the infected tissue. Finally, aPDT induced an increase in the cytokines IL-17A and IL-12p70 in the draining retromaxillary lymph node. Thus, aPDT with Brazilian green propolis proved to be effective against intradermal MRSA infection in mice, reducing bacterial load and modulating the immune response in the animals. However, more studies are needed to assess whether such effects are repeated in humans.


Asunto(s)
Antiinfecciosos , Staphylococcus aureus Resistente a Meticilina , Fotoquimioterapia , Própolis , Humanos , Ratones , Animales , Própolis/farmacología , Modelos Animales de Enfermedad , Brasil , Fotoquimioterapia/métodos , Antiinfecciosos/farmacología , Antibacterianos/farmacología , Antibacterianos/química
4.
Microb Pathog ; 189: 106595, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38387848

RESUMEN

Cymodocea serrulata mediated titanium dioxide nanoparticles (TiO2 NPs) were successfully synthesized. The XRD pattern and FTIR spectra demonstrated the crystalline structure of TiO2 NPs and the presence of phenols, flavonoids and alkaloids in the extract. Further SEM revealed that TiO2 NPs has uniform structure and spherical in shape with their size ranged from 58 to 117 nm. Antibacterial activity of TiO2 NPs against methicillin-resistant Staphylococcus aureus (MRSA) and Vibrio cholerae (V. cholerae), provided the zone of inhibition of 33.9 ± 1.7 and 36.3 ± 1.9 mm, respectively at 100 µg/mL concentration. MIC of TiO2 NPs against MRSA and V. cholerae showed 84% and 87% inhibition at 180 µg/mL and 160 µg/mL respectively. Subsequently, the sub-MIC of V. cholerae demonstrated minimal or no impact on bacterial growth at concentration of 42.5 µg/mL concentration. In addition, TiO2 NPs exhibited their ability to inhibit the biofilm forming V. cholerae which caused distinct morphological and intercellular damages analysed using CLSM and TEM. The antioxidant properties of TiO2 NPs were demonstrated through TAA and DPPH assays and exposed its scavenging activity with IC50 value of 36.42 and 68.85 µg/mL which denotes its valuable antioxidant properties with potential health benefits. Importantly, the brine shrimp based lethality experiment yielded a low cytotoxic effect with 13% mortality at 100 µg/mL. In conclusion, the multifaceted attributes of C. serrulata mediated TiO2 NPs encompassed the antibacterial, antioxidant and anti-biofilm inhibition effects with low cytotoxicity in nature were highlighted in this study and proved the bioderived TiO2 NPs could be used as a promising agent for biomedical applications.


Asunto(s)
Nanopartículas del Metal , Staphylococcus aureus Resistente a Meticilina , Nanopartículas , Titanio , Antioxidantes/farmacología , Antioxidantes/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antibacterianos/farmacología , Antibacterianos/química , Nanopartículas/química , Biopelículas , Nanopartículas del Metal/química
5.
Int J Nanomedicine ; 19: 1339-1350, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38348172

RESUMEN

Introduction: This study aimed to characterize silver nanoparticles-kaempferol (AgNP-K) and its antibacterial activities against methicillin-resistant Staphylococcus aureus (MRSA). Green synthesis method was used to synthesize AgNP-K under the influence of temperature and different ratios of silver nitrate (AgNO3 and kaempferol). Methods: AgNP-K 1:1 was synthesized with 1 mM kaempferol, whereas AgNP-K 1:2 with 2 mM kaempferol. The characterization of AgNP-K 1:1 and AgNP-K 1:2 was performed using UV-visible spectroscopy (UV-Vis), Zetasizer, transmission electron microscopy (TEM), scanning electron microscopy-dispersive X-ray spectrometer (SEM-EDX), X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy. The antibacterial activities of five samples (AgNP-K 1:1, AgNP-K 1:2, commercial AgNPs, kaempferol, and vancomycin) at different concentrations (1.25, 2.5, 5, and 10 mg/mL) against MRSA were determined via disc diffusion assay (DDA), minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) assay, and time-kill assay. Results: The presence of a dark brown colour in the solution indicated the formation of AgNP-K. The UV-visible absorption spectrum of the synthesized AgNP-K exhibited a broad peak at 447 nm. TEM, Zetasizer, and SEM-EDX results showed that the morphology and size of AgNP-K were nearly spherical in shape with 16.963 ± 6.0465 nm in size. XRD analysis confirmed that AgNP-K had a crystalline phase structure, while FTIR showed the absence of (-OH) group, indicating that kaempferol was successfully incorporated with silver. In DDA analysis, AgNP-K showed the largest inhibition zone (16.67 ± 1.19 mm) against MRSA as compared to kaempferol and commercial AgNPs. The MIC and MBC values for AgNP-K against MRSA were 1.25 and 2.50 mg/mL, respectively. The time-kill assay results showed that AgNP-K displayed bacteriostatic activity against MRSA. AgNP-K exhibited better antibacterial activity against MRSA when compared to commercial AgNPs or kaempferol alone.


Asunto(s)
Nanopartículas del Metal , Staphylococcus aureus Resistente a Meticilina , Nanopartículas del Metal/química , Quempferoles/farmacología , Plata/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Pruebas de Sensibilidad Microbiana , Espectroscopía Infrarroja por Transformada de Fourier , Extractos Vegetales/farmacología , Extractos Vegetales/química , Difracción de Rayos X
6.
Biomater Sci ; 12(6): 1558-1572, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38305728

RESUMEN

In this work, positively charged N-carbazoleacetic acid decorated CuxO nanoparticles (CuxO-CAA NPs) as novel biocompatible nanozymes have been successfully prepared through a one-step hydrothermal method. CuxO-CAA can serve as a self-cascading platform through effective GSH-OXD-like and POD-like activities, and the former can induce continuous generation of H2O2 through the catalytic oxidation of overexpressed GSH in the bacterial infection microenvironment, which in turn acts as a substrate for the latter to yield ˙OH via Fenton-like reaction, without introducing exogenous H2O2. Upon NIR irradiation, CuxO-CAA NPs possess a high photothermal conversion effect, which can further improve the enzymatic activity for increasing the production rate of H2O2 and ˙OH. Besides, the photodynamic performance of CuxO-CAA NPs can produce 1O2. The generated ROS and hyperthermia have synergetic effects on bacterial mortality. More importantly, CuxO-CAA NPs are more stable and biosafe than Cu2O, and can generate electrostatic adsorption with negatively charged bacterial cell membranes and accelerate bacterial death. Antibacterial results demonstrate that CuxO-CAA NPs are lethal against methicillin-resistant Staphylococcus aureus (MRSA) and ampicillin-resistant Escherichia coli (AREC) through destroying the bacterial membrane and disrupting the bacterial biofilm formation. MRSA-infected animal wound models show that CuxO-CAA NPs can efficiently promote wound healing without causing toxicity to the organism.


Asunto(s)
Infecciones Bacterianas , Staphylococcus aureus Resistente a Meticilina , Nanopartículas , Animales , Peróxido de Hidrógeno , Fototerapia , Nanopartículas/química , Infecciones Bacterianas/tratamiento farmacológico , Escherichia coli , Antibacterianos/química
7.
Water Res ; 252: 121219, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38309067

RESUMEN

Exploring and developing promising biomass composite membranes for the water purification and waste resource utilization is of great significance. The modification of biomass has always been a focus of research in its resource utilization. In this study, we successfully prepare a functional composite membrane, activated graphene oxide/seaweed residue-zirconium dioxide (GOSRZ), with fluoride removal, uranium extraction, and antibacterial activity by biomimetic mineralization of zirconium dioxide nanoparticles (ZrO2 NPs) on seaweed residue (SR) grafted with oxidized graphene (GO). The GOSRZ membrane exhibits highly efficient and specific adsorption of fluoride. For the fluoride concentrations in the range of 100-400 mg/L in water, the removal efficiency can reach over 99 %, even in the presence of interfering ions. Satisfactory extraction rates are also achieved for uranium by the GOSRZ membrane. Additionally, the antibacterial performance studies show that this composite membrane efficiently removes Escherichia coli (E. coli) and Methicillin-resistant Staphylococcus aureus (MRSA). The high adsorption of F- and U(VI) to the composite membrane is ascribed to the ionic exchange and coordination interactions, and its antibacterial activity is caused by the destruction of bacterial cell structure. The sustainability of the biomass composite membranes is further evaluated using the Sustainability Footprint method. This study provides a simple preparation method of biomass composite membrane, expands the water purification treatment technology, and offers valuable guidance for the resource utilization of seaweed waste and the removal of pollutants in wastewater.


Asunto(s)
Grafito , Staphylococcus aureus Resistente a Meticilina , Uranio , Purificación del Agua , Circonio , Uranio/análisis , Flúor , Escherichia coli , Fluoruros , Biomimética , Purificación del Agua/métodos , Adsorción , Antibacterianos
8.
ACS Appl Mater Interfaces ; 16(9): 11251-11262, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38394459

RESUMEN

Nanozyme has been proven to be an attractive and promising candidate to alleviate the current pressing medical problems. However, the unknown clinical safety and limited function beyond the catalysis of the most reported nanozymes cannot promise an ideal therapeutic outcome in further clinical application. Herein, we find that ferric maltol (FM), a clinically approved iron supplement synthesized through a facile scalable method, exhibits excellent peroxidase-like activity than natural horseradish peroxidase-like (HRP) and commonly reported Fe-based nanozymes, and also shows high antibacterial performance for methicillin-resistant Staphylococcus aureus (MRSA) elimination (100%) and wound disinfection. In addition, with added effects inherited from contained maltol, FM can accelerate skin barrier recovery. Therefore, the exploration of FM as a safe and desired nanozyme provides a timely alternative to current antibiotic therapy against drug-resistant bacteria.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Pironas , Desinfección , Compuestos Férricos/farmacología , Peroxidasa de Rábano Silvestre , Catálisis , Antibacterianos/farmacología , Peróxido de Hidrógeno , Peroxidasa
9.
Front Cell Infect Microbiol ; 14: 1336821, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38357445

RESUMEN

Drug-resistant Staphylococcus aureus stands as a prominent pathogen in nosocomial and community-acquired infections, capable of inciting various infections at different sites in patients. This includes Staphylococcus aureus bacteremia (SaB), which exhibits a severe infection frequently associated with significant mortality rate of approximately 25%. In the absence of better alternative therapies, antibiotics is still the main approach for treating infections. However, excessive use of antibiotics has, in turn, led to an increase in antimicrobial resistance. Hence, it is imperative that new strategies are developed to control drug-resistant S. aureus infections. Bacteriophages are viruses with the ability to infect bacteria. Bacteriophages, were used to treat bacterial infections before the advent of antibiotics, but were subsequently replaced by antibiotics due to limited theoretical understanding and inefficient preparation processes at the time. Recently, phages have attracted the attention of many researchers again because of the serious problem of antibiotic resistance. This article provides a comprehensive overview of phage biology, animal models, diverse clinical case treatments, and clinical trials in the context of drug-resistant S. aureus phage therapy. It also assesses the strengths and limitations of phage therapy and outlines the future prospects and research directions. This review is expected to offer valuable insights for researchers engaged in phage-based treatments for drug-resistant S. aureus infections.


Asunto(s)
Bacteriófagos , Staphylococcus aureus Resistente a Meticilina , Terapia de Fagos , Infecciones Estafilocócicas , Animales , Humanos , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Fagos de Staphylococcus
10.
Adv Healthc Mater ; 13(9): e2303336, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38211556

RESUMEN

Photodynamic therapy as a burgeoning and non-invasive theranostic technique has drawn great attention in the field of antibacterial treatment but often encounters undesired phototoxicity of photosensitizers during systemic circulation. Herein, a supramolecular substitution strategy is proposed for phototherapy of drug-resistant bacteria and skin flap repair by using macrocyclic p-sulfonatocalix(4)arene (SC4A) as a host, and two cationic aggregation-induced emission luminogens (AIEgens), namely TPE-QAS and TPE-2QAS, bearing quaternary ammonium group(s) as guests. Through host-guest assembly, the obtained complex exhibits obvious blue fluorescence in the solution due to the restriction of free motion of AIEgens and drastically inhibits efficient type I ROS generation. Then, upon the addition of another guest 4,4'-benzidine dihydrochloride, TPE-QAS can be competitively replaced from the cavity of SC4A to restore its pristine ROS efficiency and photoactivity in aqueous solution. The dissociative TPE-QAS shows a high bacterial binding ability with an efficient treatment for methicillin-resistant Staphylococcus aureus (MRSA) in dark and light irradiation. Meanwhile, it also exhibits an improved survival rate for MRSA-infected skin flap transplantation and largely accelerates the healing process. Thus, such cascaded host-guest assembly is an ideal platform for phototheranostics research.


Asunto(s)
Calixarenos , Staphylococcus aureus Resistente a Meticilina , Fenoles , Fotoquimioterapia , Fármacos Fotosensibilizantes/química , Especies Reactivas de Oxígeno , Fototerapia , Fotoquimioterapia/métodos
11.
Phytochemistry ; 219: 113988, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38224846

RESUMEN

Hedscandines A-C (1-3), three undescribed indole alkaloids were isolated from Hedyotis scandens Roxb, a traditional Chinese medicine widely used in the treatment of respiratory ailments. Their structures were elucidated by extensive spectroscopic data and electronic circular dichroism calculation. Hedscandine A (1), possessed a unique carbon skeleton with a 1,4-oxazonin-2(3H)-one core system and displayed a rapid bactericidal activity against MRSA with a MIC value of 16 µg/mL. Mechanistic studies showed that compound 1 could disrupt the integrity of bacterial cell membranes and thus lead to bacterial death.


Asunto(s)
Hedyotis , Staphylococcus aureus Resistente a Meticilina , Antibacterianos/química , Pruebas de Sensibilidad Microbiana , Alcaloides Indólicos/química
12.
Microbiol Res ; 281: 127625, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38280369

RESUMEN

Staphylococcus aureus (S. aureus) is a zoonotic pathogen that infects both humans and animals. The rapid spread of methicillin-resistant S. aureus (MRSA) and its resistance to antibiotics, along with its ability to form biofilms, poses a serious challenge to the clinical application of traditional antibiotics. Peony (Paeonia lactiflora Pall.) is a traditional Chinese medicine with multiple pharmacological effects. This study observed the strong antibacterial and antibiofilm activity of the water extract (WE) and ethyl acetate extract (EA) of Chinese peony pods against MRSA. The combination of EA and vancomycin, cefotaxime, penicillin G or methicillin showed a synergistic or additive antibacterial and antibiofilm effects on MRSA, which is closely related to the interaction of 1,2,3,4,6-penta-O-galloyl-ß-D-glucose (PG) and methyl gallate (MG). The active ingredients in peony pods have been found to increase the sensitivity of MRSA to antibiotics and demonstrate antibiofilm activity, which is mainly related to the down-regulation of global regulatory factors sarA and sigB, extracellular PIA and eDNA encoding genes icaA and cdiA, quorum sensing related genes agrA, luxS, rnaIII, hld, biofilm virulence genes psma and sspA, and genes encoding clotting factors coa and vwb, but is not related to genes that inhibit cell wall anchoring. In vivo test showed that both WE and EA were non-toxic and significantly prolonged the lifespan of G. mellonella larvae infected with MRSA. This study provides a theoretical basis for further exploration of the combined use of PG, MG and antibiotics to combat MRSA infections.


Asunto(s)
Glucosa , Staphylococcus aureus Resistente a Meticilina , Paeonia , Infecciones Estafilocócicas , Humanos , Animales , Antibacterianos/farmacología , Staphylococcus aureus , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Biopelículas , Pruebas de Sensibilidad Microbiana
13.
Biomed Mater ; 19(2)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38215483

RESUMEN

With the rise in microbial resistance to traditional antibiotics and disinfectants, there is a pressing need for the development of novel and effective antibacterial agents. Two major approaches being adopted worldwide to overcome antimicrobial resistance are the use of plant leaf extracts and metallic nanoparticles (NPs). However, there are no reports on the antibacterial potential of NPs coated with plant extracts, which may lead to novel ways of treating infections. This study presents an innovative approach to engineer antibacterial NPs by leveraging the inherent antibacterial properties of zinc oxide NPs (ZnO NPs) in combination withAzadirachta indica(AI) leaf extract, resulting in enhanced antibacterial efficacy. ZnO NPs were synthesised by the precipitation method and subsequently coated withAIleaf extract to produce ZnO-AInanocore-shell structures. The structural and morphological characteristics of the bare and leaf extract coated ZnO NPs were analysed by x-ray diffraction and field emission scanning electron microscopy, respectively. The presence of anAIleaf extract coating on ZnO NPs and subsequent formation of ZnO-AInanocore-shell structures was verified through Fourier transform infrared spectroscopy and photoluminescence techniques. The antibacterial efficacy of both ZnO NPs and ZnO-AInanocore-shell particles was evaluated against methicillin-resistantStaphylococcus aureususing a zone of inhibition assay. The results showed an NP concentration-dependent increase in the diameter of the inhibition zone, with ZnO-AInanocore-shell particles exhibiting superior antibacterial properties, owing to the combined effect of ZnO NPs and the poly phenols present inAIleaf extract. These findings suggest that ZnO-AInanocore-shell structures hold promise for the development of novel antibacterial creams and hydrogels for various biomedical applications.


Asunto(s)
Azadirachta , Nanopartículas del Metal , Staphylococcus aureus Resistente a Meticilina , Óxido de Zinc , Meticilina , Óxido de Zinc/química , Antibacterianos/química , Nanopartículas del Metal/química , Extractos Vegetales/química , Difracción de Rayos X , Espectroscopía Infrarroja por Transformada de Fourier , Pruebas de Sensibilidad Microbiana
14.
Ann Clin Microbiol Antimicrob ; 23(1): 7, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38245727

RESUMEN

The ability of Staphylococcus epidermidis and S. aureus to form strong biofilm on plastic devices makes them the major pathogens associated with device-related infections (DRIs). Biofilm-embedded bacteria are more resistant to antibiotics, making biofilm infections very difficult to effectively treat. Here, we evaluate the in vitro activities of anti-staphylococcal drug oxacillin and antimicrobial peptide nisin, alone and in combination, against methicillin-resistant S. epidermidis (MRSE) clinical isolates and the methicillin-resistant S. aureus ATCC 43,300. The minimum inhibitory concentrations (MIC) and minimum biofilm eradication concentrations (MBEC) of oxacillin and nisin were determined using the microbroth dilution method. The anti-biofilm activities of oxacillin and nisin, alone or in combination, were evaluated. In addition, the effects of antimicrobial agents on the expression of icaA gene were examined by quantitative real-time PCR. MIC values for oxacillin and nisin ranged 4-8 µg/mL and 64-128 µg/mL, respectively. Oxacillin and nisin reduced biofilm biomass in all bacteria in a dose-dependent manner and this inhibitory effect was enhanced with combinatorial treatment. MBEC ranges for oxacillin and nisin were 2048-8192 µg/mL and 2048-4096 µg/mL, respectively. The addition of nisin significantly decreased the oxacillin MBECs from 8- to 32-fold in all bacteria. At the 1× MIC and 1/2× MIC, both oxacillin and nisin decreased significantly the expression of icaA gene in comparison with untreated control. When two antimicrobial agents were combined at 1/2× MIC concentration, the expression of icaA were significantly lower than when were used alone. Nisin/conventional oxacillin combination showed considerable anti-biofilm effects, including inhibition of biofilm formation, eradication of mature biofilm, and down-regulation of biofilm-related genes, proposing its applications for treating or preventing staphylococcal biofilm-associated infections, including device-related infections.


Asunto(s)
Antiinfecciosos , Staphylococcus aureus Resistente a Meticilina , Nisina , Infecciones Estafilocócicas , Humanos , Staphylococcus aureus , Oxacilina/farmacología , Nisina/farmacología , Nisina/uso terapéutico , Staphylococcus epidermidis , Staphylococcus aureus Resistente a Meticilina/genética , Péptidos Antimicrobianos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Antiinfecciosos/farmacología , Staphylococcus , Biopelículas , Pruebas de Sensibilidad Microbiana
15.
Physiol Rep ; 12(1): e15902, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38163670

RESUMEN

Although zinc deficiency (secondary to malnutrition) has long been considered an important contributor to morbidity and mortality of infectious disease (e.g. diarrhea disorders), epidemiologic data (including randomized controlled trials with supplemental zinc) for such a role in lower respiratory tract infection are somewhat ambiguous. In the current study, we provide the first preclinical evidence demonstrating that although diet-induced acute zinc deficiency (Zn-D: ~50% decrease) did not worsen infection induced by either influenza A (H1N1) or methicillin-resistant staph aureus (MRSA), Zn-D mice were sensitive to the injurious effects of superinfection of H1N1 with MRSA. Although the mechanism underlying the sensitivity of ZnD mice to combined H1N1/MRSA infection is unclear, it was noteworthy that this combination exacerbated lung injury as shown by lung epithelial injury markers (increased BAL protein) and decreased genes related to epithelial integrity in Zn-D mice (surfactant protein C and secretoglobins family 1A member 1). As bacterial pneumonia accounts for 25%-50% of morbidity and mortality from influenza A infection, zinc deficiency may be an important pathology component of respiratory tract infections.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Desnutrición , Staphylococcus aureus Resistente a Meticilina , Neumonía Bacteriana , Animales , Ratones , Neumonía Bacteriana/complicaciones , Staphylococcus aureus , Zinc
16.
Biomed Mater ; 19(2)2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38181448

RESUMEN

Antimicrobial wound dressings play a crucial role in treatment of wound infections. However, existing commercial options fall short due to antibiotic resistance and the limited spectrum of activity of newly emerging antimicrobials against bacteria that are frequently encountered in wound infections. Antimicrobial photodynamic therapy (aPDT) is very promising alternative therapeutic approach against antibiotic resistant microbes such as methicillin resistantStaphylococcus aureus (MRSA). However, delivery of the photosensitizer (PS) homogeneously to the wound site is a challenge. Though polymeric wound dressings based on synthetic and biopolymers are being explored for aPDT, there is paucity of data regarding theirin vivoefficacy. Moreover, there are no studies on use of PS loaded, pluoronic (PL) and pectin (PC) based films for aPDT. We report development of a polymeric film for potential use in aPDT. The film was prepared using PL and PC via solvent casting approach and impregnated with methylene blue (MB) for photodynamic inactivation of MRSAin vitroandin vivo. Atomic force microscopic imaging of the films yielded vivid pictures of surface topography, with rough surfaces, pores, and furrows. The PL:PC ratio (2:3) was optimized that would result in an intact film but exhibit rapid release of MB in time scale suitable for aPDT. The film showed good antibacterial activity against planktonic suspension, biofilm of MRSA upon exposure to red light. Investigations on MRSA infected excisional wounds of mice reveal that topical application of MB loaded film for 30 min followed by red light exposure for 5 min (fluence; ∼30 J cm-2) or 10 min (fluence; ∼60 J cm-2) reduces ∼80% or ∼92% of bioburden, respectively. Importantly, the film elicits no significant cytotoxicity against keratinocytes and human adipose derived mesenchymal stem cells. Taken together, our data demonstrate that PS-loaded PL-PC based films are a promising new tool for treatment of MRSA infected wounds.


Asunto(s)
Antiinfecciosos , Staphylococcus aureus Resistente a Meticilina , Infección de Heridas , Animales , Ratones , Humanos , Meticilina/uso terapéutico , Poloxámero/uso terapéutico , Azul de Metileno/uso terapéutico , Pectinas/uso terapéutico , Fármacos Fotosensibilizantes , Antibacterianos , Polímeros , Biopelículas , Infección de Heridas/tratamiento farmacológico , Infección de Heridas/microbiología
17.
Lasers Med Sci ; 39(1): 46, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38270723

RESUMEN

This investigation tried to evaluate the combined and solo effects of photobiomodulation (PBM) and conditioned medium derived from human adipose tissue-derived stem cells (h-ASC-CM) on the inflammatory and proliferative phases of an ischemic infected delayed healing wound model (IIDHWM) in rats with type I diabetes mellitus (TIDM). The present investigation consisted of four groups: group 1 served as the control, group 2 treated with h-ASC-CM, group 3 underwent PBM treatment, and group 4 received a combination of h-ASC-CM and PBM. Clinical and laboratory assessments were conducted on days 4 and 8. All treatment groups exhibited significantly higher wound strength than the group 1 (p = 0.000). Groups 4 and 3 demonstrated significantly greater wound strength than group 2 (p = 0.000). Additionally, all therapeutic groups showed reduced methicillin -resistant Staphylococcus aureus (MRSA) in comparison with group 1 (p = 0.000). While inflammatory reactions, including neutrophil and macrophage counts, were significantly lower in all therapeutic groups rather than group 1 on days 4 and 8 (p < 0.01), groups 4 and 3 exhibited superior results compared to group 2 (p < 0.01). Furthermore, proliferative activities, including fibroblast and new vessel counts, as well as the measurement of new epidermal and dermal layers, were significantly increased in all treatment groups on 4 and 8 days after the surgery (p < 0.001). At the same times, groups 4 and 3 displayed significantly higher proliferative activities compared to group 2 (p < 0.001). The treatment groups exhibited significantly higher mast cell counts and degranulation phenotypes in comparison with the group 1 on day 4 (p < 0.05). The treatment groups showed significantly lower mast cell counts and degranulation phenotypes than group 1 on day 8 (p < 0.05).The combined and individual application of h-ASC-CM and PBM remarkably could accelerate the proliferation phase of wound healing in the IIDHWM for TIDM in rats, as indicated by improved MRSA control, wound strength, and stereological evaluation. Furthermore, the combination of h-ASC-CM and PBM demonstrated better outcomes compared to the individual application of either h-ASC-CM or PBM alone.


Asunto(s)
Diabetes Mellitus , Terapia por Luz de Baja Intensidad , Staphylococcus aureus Resistente a Meticilina , Humanos , Animales , Ratas , Medios de Cultivo Condicionados/farmacología , Recuento de Leucocitos , Células Madre , Cicatrización de Heridas , Proliferación Celular
18.
Fitoterapia ; 173: 105814, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38163447

RESUMEN

Four new ansamycin derivatives, named 1,19-epithio-geldanamycin A (1), 17-demethoxylherbimycin H (2), herbimycin M (3), and seco-geldanamycin B (4), together with eight known ansamycin analogues (5-12) were isolated from the solid fermentation of marine-derived actinomycete Streptomyces sp. ZYX-F-97. The structures of new compounds were elucidated by extensive spectroscopic analysis as well as nuclear magnetic resonance (NMR) and electronic circular dichroism (ECD) calculations. All the compounds were assayed for their antibacterial activity. Among them, compounds 4, 8, and 12 exhibited remarkable inhibition against Listeria monocytogenes with minimum inhibitory concentrations (MIC) values ranging from 8 µg·mL-1 to 64 µg·mL-1, and displayed moderate inhibition against methicillin-resistant Staphylococcus aureus (MRSA) with MIC value of 64 µg·mL-1. Compounds 4, 8, 9, and 12 showed moderate inhibition activities against both Staphylococcus aureus and Bacillus subtilis with MIC values ranging from 32 µg·mL-1 to 128 µg·mL-1.


Asunto(s)
Benzoquinonas , Staphylococcus aureus Resistente a Meticilina , Streptomyces , Lactamas Macrocíclicas , Streptomyces/química , Estructura Molecular , Antibacterianos , Espectroscopía de Resonancia Magnética , Pruebas de Sensibilidad Microbiana
19.
Braz J Microbiol ; 55(1): 515-527, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38231376

RESUMEN

The surge in multidrug-resistant pathogens worldwide has jeopardized the clinical efficiency of many current antibiotics. This problem steered many researchers in their quest to discover new effective antimicrobial agents from natural origins including plants or their residing endophytes. In this work, we aimed to identify the endophytic fungi derived from Hedera helix L. and investigate their potential antimicrobial activity. Bioguided fractionation approach was conducted to isolate the pure compounds from the most active fungal fraction. Out of a total of six different isolated endophytic fungal strains, only Aspergillus cejpii showed the highest activity against all tested microbial strains. The most active fraction was the dichloromethane/methanol fraction (DCM:MeOH), where it showed significant activity against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Serratia marcescens, Acinetobacter baumannii, Salmonella typhi, and three drug-resistant clinical isolate strains including Methicillin-resistant Staphylococcus aureus (MRSA, H1), Pseudomonas aeruginosa (PS 16), and Acinetobacter baumannii (ACT 322) using tetracyline and kanamycin as the control antibiotics. Bioguided fractionation of the active fraction led to the isolation of the γ-butenolide, spiculisporic acid. Structure elucidation was carried out using 1H and 13C-NMR spectroscopic analysis. The compound showed good antimicrobial activities with minimum inhibitory concentration (MIC) values ranging from 3.9 to 31.25 µg/mL against all tested strains. Gas chromatography coupled to mass spectrometry (GC-MS) profiling was also carried out to identify the metabolites in the microbial crude extract. In conclusion, endophytic fungi, Aspergillus cejpii, isolated from Hedera helix L. roots showed promising antimicrobial activity which merits further in-depth investigations for potential utilization as a source of new antibiotics in the future. It can also be considered as a novel source for spiculisporic acid.


Asunto(s)
Antiinfecciosos , Aspergillus , Hedera , Staphylococcus aureus Resistente a Meticilina , Antibacterianos/química , Antiinfecciosos/farmacología , Pruebas de Sensibilidad Microbiana , Hongos
20.
Braz J Microbiol ; 55(1): 543-556, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38261262

RESUMEN

Endophytic fungi have been recognized as a valuable source for the production of biologically active compounds with potential applications in various domains. This study aimed to isolate endophytic fungi from Ampelopsis japonica (Thunb.) Makino and assess their anti-MRSA activity. Meanwhile, chromatographic separation techniques were applied to analyze the constituents of endophytic fungal secondary metabolites. The isolate BLR24, which exhibited strong inhibition activity against MRSA, was identified as Trichoderma virens based on morphological characteristics and ITS sequence analyses. The ethyl acetate extract of BLR24 (EA-BLR24) showed good anti-MRSA activity with the MIC and MBC values of 25 µg/mL and 50 µg/mL, separately. The inhibition of biofilm formation was up to 34.67% under MIC concentration treatment. Meanwhile, EA-BLR24 could significantly reduce the expression of biofilm-related genes (icaA, sarA, and agrA) of MRSA. Based on LC-MS/MS analysis, twenty compounds in EA-BLR24 could be annotated using the GNPS platform, mainly diketopiperazines. The anti-MRSA compound (Fr.1.1) was obtained from EA-BLR24 by bioassay-guided fractionation and determined as gliotoxin. The results indicated that endophytic Trichoderma virens BLR24 isolated from the medical plant A. japonica roots could be a promising source of natural anti-MRSA agents. Endophytic fungal secondary metabolites are abundant in biologically active compounds. Endophytic fungi from medicinal plants could be a source yielding bioactive metabolites of pharmaceutical importance.


Asunto(s)
Ampelopsis , Staphylococcus aureus Resistente a Meticilina , Plantas Medicinales , Trichoderma , Cromatografía Liquida , Espectrometría de Masas en Tándem , Endófitos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA